	授業科目名	必修•選択	開講やスター	単位数	担 当 教員
	パワーエレクトロニクス	選択	6	2	穴 澤 義 久
	電力用半導体素子を用いて電力を変換し制御する技術•学問分野はパワーエレクトロニクスと呼ばれている。歴史の長い電力・エネルギー変換の分野にあってもっとも新しい技術であり，身近な電化製品や交通機関等にもその応用例を数多く見ることができる。 本講義では，パワーエレクトロニクスの基礎および応用について学ぶ。				
	1．パワーエレクトロニクス概説 2．電力用半導体素子 ダイオード，サイリスタ，GTO，パワートランジスタ等の特性 3．整流回路 I 基本整流回路，純抵抗負荷の場合における位相制御時の直流出力電圧 4．整流回路 II 誘導負荷時の整流回路の動作と平滑用リアクトルの作用 5．整流回路III 交流側のひずみ率と力率，交流条件と直流偏磁 他励式逆変換回路 6．直流チョッパ 降圧形チョッパ，昇圧形チョッパ，昇降圧形チョッパ 7．インバータ I インバータの原理，電圧形および電流形インバータの回路構成，出力電圧の調整 8．インバータII PWM方式による出力電圧の改善と出力電圧の調整 三相インバータ 9．A C－A C 変換回路 交流電圧調整回路，無効電力調整，サイクロコンバータ				
成績評価の方法 定期試験 80% ，レポート 20% の結果より総合的に評価する。					
テキスト・参考書等 テキスト：片岡昭雄著『パワーエレクトロニクス入門』森北出版 $¥ 2,310$					
履修上の留意点 過渡現象論：R－L 直列回路の過渡現象をよく理解しておくこと。 工業数学：フーリエ級数をよく理解しておくこと。					
備考					

	授業科目名	必修•選択	開講セメスター	単位数	担 当	
	システム制御工学	選択	6	2	徐	
	制御とは，ある目的に適合するように，対象となっているものに所要の操作を加えることと定義されている。システム制御工学は，機械システム，電気システム，化学システム，経済システム，社会システムなどあらゆる対象システムの制御に共通に適用できる一般的な方法論である。本講義 では， 1 入力 1 出力の線形システムをその外部入出力特性でとらえ，主に周波数領域の方法を利用している古典制御理論を中心に，システム制御のための解析•設計の基礎理論を習得する。					
	システム制御の解析と設計の基礎理論を習得するために，システムの微分方程式表現，伝達関数表現，周波数特性，安定性などの基本的事項，およびフィードバック制御系の基本概念と構成 について講義する。さらに，制御系の解析と設計の方法と具体的な手順について解説する。授業計画： 1．システムの特性と制御 （システムと自動制御とは，制御系の構成と分類，因果性，時不変性，線形性等） 2．ラプラス変換と微分方程式 （ラプラス変換と逆ラプラス変換の定義，性質，計算，ラプラス変換による微分方程式の求解） 3．伝達関数 （伝達関数によるシステムの表現，基本要素の伝達関数導出，ブロック線図による簡略化） 4．フィードバック制御の基礎 （フィードバック制御系の伝達関数と特性，定常特性とその計算，過渡特性，インパルス応答とステップ応答の計算） 5．周波数応答 （周波数応答の概念，ベクトル軌跡，ボード線図） 6．フィードバック制御系の安定性と過渡特性 （安定性の定義，ラウスとフルビッツの安定性判別法，制御系の安定度，閉ループ系共振値Mpと過渡特性との関連等） 7．周波数応答によるフィードバック制御系の特性設計 （制御系設計と特性補償の概念，ゲイン補償，直列補償，遅れ補償と進み補償等）					
成績評価の方法 - 定期試験の受験資格 ：原則として授業回数の $2 / 3$ 以上の出席が必要 - 成績評価：宿題・レポート：30\％；定期試験：70\％；遅刻•欠席：減点						
テキスト・参考書等テキスト：斉藤制海，徐粒『制御工学』森北出版社テ⿳厶大彡心考書：中野道雄，美多 勉『制御基礎理論一古典から現代まで』昭晃堂						
履修上の留意点 - 講義内容全体をシステマティックに理解するために，遅刻•無断欠席しないこと。 - 多項式と多項式の因子分解，複素数，微分方程式の基礎知識を復習しておくこと。						
備考						

2－49

2-50

	授業 科 目 名	必修•選択	開講セメスター	単位数	担 当 教
	電気•電子材料	選択	4	2	山口 博
	電子情報技術を支えているのは電気電子材料である。従って，各種電子通信機器に関する技術的課題を克服していくには，電気電子材料の基礎を理解しておくことが重要である。ここでは，電子材料として広く利用されている導電性材料，半導体材料，誘電体•絶縁材料，磁性体材料に ついて基礎的な知識を習得し，それらの機能性について物理•化学的観点から理解する。同時に，電気電子材料の作成•評価技術についても学ぶ。				
	〈講義内容〉 1．電気電子材料の基礎（1）（Bohr の水素原子モデル，原子間結合力） 2．電気電子材料の基礎（2）（量子統計，結晶，B r a g g の回折条件） 3．電気電子材料の基礎（3）（バンド理論，価電子帯，伝導帯，禁制帯，B lochの定理） 4．導電•抵抗材料（1）（電気伝導率，抵抗率，移動度，電子数密度，Drudeモデル） 5．導電•抵抗材料（2）（格子振動•不純物による電子散乱，Matthiessenの法電子の有効質量•平均緩和時間，Wiedemann－Frantz の法 6．導電•抵抗材料（3）（各種導電材料，各種合金材料，導電性液体材料） 7．導電•抵抗材料（4）（超伝導の基礎，超伝導磁石，S Q U I D，Josephson素 8．導電•抵抗材料（5）（抵抗材料の温度依存性，各種抵抗材料） 9．半導体材料（1）（正孔，元素半導体，化合物半導体，Vegardの法則） 10．半導体材料（2）（真性半導体，不純物半導体，ドナー，アクセプター，トラップ準位） 11．半導体材料（3）（ホール効果，各種接合と整流作用，ダイオード，トランジスタ） 12．半導体材料（4）（各種センサー，オプトエレクトロニクスへの応用，結晶育成技術） 13 ．誘電体•絶縁体材料（誘電分極，強誘電体，漏れ電流，絶縁破壊，焦電体，圧電体） 14 ．磁性体材料（透磁率，強磁性体，保磁力，残留磁化，飽和磁化，ヒステリシス損，硬磁性材料，軟磁性材料，渦電流損，磁気記録）				
成績評価の方法 主に期末試験の結果から評価する。（ただし，講義への参加度合•小テスト・レポートなどの結果を評価に加味する場合もある）。なお，講義の出席率が 50% 未満の場合は不可とする。					
テキスト・参考書等 テキスト：中沢達夫他『電気•電子材料』コロナ社（¥2，625） 参 考 書：国立天文台『理科年表』丸善（税別 $¥ 1, ~ 200$ ）					
履修上の留意点 化学 I（1セメ），物理学 I（1セメ）•II（2セメ）の内容を理解していること。電子物性（4セメ）および量子力学（4セメ）も並行して受講するのが望ましい。					
備考 小テストの際，関数電卓が必要になる場合があるので各自持参すること。					

	授業 科 目 名	必修•選択	開講セメスター	単位数	担 当 教	
	電子物性	選択	4	2	青 山	隆
授	今日のエレクトロニクスの中心をなす電子デバイスは微細化と高集積化が進み，発展の一途を歩んでいる。電子デバイス特性を理解し，電子デバイスを十二分に使いこなすためには，電子物性，すなわち固体中の電子の挙動を十分に把握しなければならない。特に，半導体のバンド理論 は最も重要な概念であるため，詳しく解説する。一方，磁気デバイスも高記録密度化が進み重要性が高まっているため，これに関連する磁性についても解説する。					
1．固体の結晶構造 2．結晶の不完全性 3．格子振動 授 4．固体の熱的性質 業 5 。固体の自由電子モデル の 6．バンド理論 概 7．半導体 要 8．半導体デバイスの基礎 9．誘電体 計 10．磁性体						
成績評価の方法 定期試験（ 80% ）と課題レポート（ 20% ）から評価する。						
テキスト・参考書等 参考書：松澤，高橋，斉藤 『電子物性』森北出版 2 ，415円						
履修上の留意点 量子力学と電子材料を履修していることが望ましい。						
備考						

	授業科目名	必修•選択	開講や入㐌	単位数	担 当 教
	半導体材料	選択	6	2	能 勢 敏
近年の電子デバイスの小型化•高性能化の進展は，主に半導体材料による電子デバイスの固体化が重要な役割を果たしてきた。半導体レーザーの進歩によって光ディスク装置が一般家庭で使 えるようになった。また，CCDセンサーの進歩によって携帯電話にカメラが載る時代になった。唯一我々の身近に残されている真空デバイスであるCRTも近い将来に家庭から消えるかも知れな い。このように応用の面で今や極めて重要となっている半導体材料を広く材料物性の観点から学習する。既に，材料•物性関係の科目がいくつか開講されているので，ここでは光デバイス応用 に関連する内容に重点を置いて，化合物半導体を含めて学習する。					
1．結晶格子の分類とエネルギーバンド構造 2．ゾンマーフェルトモデルと状態密度の導出 3．フェルミ分布関数とキャリヤ密度 授 4．フォノンの概念とキャリヤの散乱現象 業 5．移動度の概念とガン効果について の 6．物質の磁気的性質の基礎 概 7．磁気光学効果とその応用（光アイソレータ，光磁気メモリ） 要 8．物質の誘電的性質の基礎とクラジウス・モソティの式の導出 9．調和振動子モデルによる電子分極の考察 計 10 ．誘電緩和現象とコール・コールプロット 画 1 1．物質の光学的特性の基礎 12．半導体の光吸収と光電効果 13．化合物半導体とルミネセンス 14．光センサーと太陽電池					
成績評価の方法 出席，課題に対する自習レポートおよび期末試験から総合的に評価を行う。おおむね出席 15% ，レ ポート 15% ，期末試験 70% とする。					
テキスト・参考書等 テキスト：佐藤勝昭，越田「応用電子物性」コロナ社 $¥ 2,730$					
```履修上の留意点 電子物性, 電子材料, 電子デバイス I を履修しておくことが望ましい。また, 必要に応じて復習 すること。```					
備考					



	授業 科 目 名	必修•選択	開講セメスター	単位数	担 当 教 員 名
	電子デバイス工学 II	選択	6	2	本 間 道 則
授   業   の   目   目   標	- 非平衡状態での半導体の性質を理解し，基本方程式を用いて基礎的な問題を解くことができる。   - 半導体 p n 接合やショットキー接合などのダイオード全般の基礎特性を理解し，問題を解くこ とができる。   －バイポーラトランジスタやMO S トランジスタの構造と基本動作特性を理解し，問題を解くこ とができる。   －半導体デバイスと集積回路の製造工程を理解し，問題を解くことが出来る。				
バイポーラトランジスタやMO S トランジスタなどの能動 3 端子デバイスを構成 の物性を基礎にして，それらの構造や電気的な静特性•動特性，その回路モデルや動 を明らかにするとともに，集積回路などに応用された場合の各種基本回路技術につい   ＜講義内容＞   1．電子デバイスの基礎   2．バイポーラトランジスタの構造と基本特性   3．バイポーラトランジスタ（ベース内の少数キヤリヤ分布と注入効率，輸送効   4．バイポーラトランジスタ（電流利得と電流電圧特性）   5．バイポーラトランジスタ（直流等価回路モデルとエバース・モルの方程式）   6．バイポーラトランジスタ（小信号等価回路と周波数特性）   7．MOSトランジスタの構造と基本特性   8．MO S トランジスタ（動作原理，電流電圧特性）   9．MO S トランジスタ（小信号等価回路と周波数特性）   10．集積回路内の半導体デバイス   11．アナログ信号用集積回路   12．デジタル信号用集積回路					
成績評価の方法   定期試験 $80 \%$ ，課題レポート $10 \%$ ，出席 $10 \%$ を基準とし，更に講義中の発言や質疑なども考慮に入れて評価する。					
$\begin{aligned} & \text { テキスト・参考書等 } \\ & \text { テキスト: 古川静二郎 『半導体デバイス』 コロナ社 } 2 \text {, } 500 \text { 円 } \end{aligned}$					
履修上の留意点   電気•電子材料，電子物性，量子力学，電子デバイス工学 I を履修していることが望ましい。					
備考					

咸績評価の方法
定期試験 $80 \%$ ，課題レポート $10 \%$ ，出席 $10 \%$ を基準とし，更に講義中の発言や質疑なども考慮に人れて評価する。
テキスト・参考書等
テキスト：古川静二郎 『半導体デバイス』 コロナ社 2，500円

履修上の留意点
電気•電子材料，電子物性，量子力学，電子デバイス工学 I を履修していることが望ましい。

## 備考



	授業科目名	必修•選択	開講セメター	単位数	担 当 教 員
	数値解析	選択	4	2	小 澤－
	計算機による数値計算の技法（アルゴリズムおよびプログラミングテクニック）とその誤差，効率などを学ぶ。計算機の計算速度が速くなったとは言え，「力任せ」に計算を行うと大変なこと が起きるということを随所に実例とエピソードを交え，講義する。この講義を聴講することによ って，プログラミング力と数学力が向上すれば理想的である。				
	1．数値解析と   科学技術   2．計算機にお   誤差の種   3．連立一次方 ガウスの   4．非線形方程二分法，   5．補間と近似補間とは，   6．数値積分数値積分	る数值解析の   の表現法差の伝播，   法   ガウスザイ   復法，Newto   間，二次補   形公式，シンブ	割，数学モ   差を小さく   ル法   法，割線法 ラグラン   プソン公式	バルと計   るために   収束の   二の補	ルの違いにつ   いて
成績評価の方法					
テキスト・参考書等テキスト：小澤一文著『数値計算法』共立出版，$¥ 2,369$					
履修上の留意点   微積分の初歩およびプログラミングの素養が必要					
備考					


	授業 科 目 名	必修•選択	開講セメスター	単位数	担 当 教 員 名
	情報理論	選択	4	2	草 苅 良 至
授	計算機の内部では情報は数値として表現される。また，情報通信においてはディジタル通信技術がますます重要になってきている。これらの技術を理解するための理論的基礎を学習する。ま ず，情報の数値化の原理と限界を学習する。次に，通信における情報の性質とその表現法につい て学習する。				
授	1．情報量とその性質   確率論の基礎，自己情報量と平均情報量（エントロピー），エントロピーの性質   2．情報源のモデルと種類   無記憶情報源，マルコフ情報源   3．情報源符号化   情報源符号化定理，シャノン・ファノ符号，ハフマン符号   4．通信路と相互情報量   通信路行列，相互情報量， 2 元対称通信路，通信路容量   5．通信路符号化   通信路符号化定理，パリティ検査，ハミング距離，線形符号				
成績評価の方法   試験 $70 \%$ ，レポート $15 \%$ ，授業内演習 $15 \%$ で評価する。					
テキスト・参考書等   テキスト：平田廣則著 『情報理論のエッセンス』 昭晃堂 2 ， 700 円参考書：今井秀樹著 『情報•符号•暗号の理論』 コロナ社 3，500円今井秀樹著 『情報理論』 昭晃堂 2 ， 900 円					
履修上の留意点   確率•統計学を履修していることが望ましい。					
備考					


	授業 科 目 名	必修•選択	開講セメスター	単位数	担 当 教 員 名
	ディジタル信号処理	必修	4	2	高 根 昭 一
授   業   の   O   目   標	ディジタル信号処理は，様々な情報の処理および通信の技術として，基幹的な役割を果たして いる。本授業では，連続的に変化する（アナログの）信号を，離散的（ディジタル）に標本化して取 り扱ったときの，アナログーディジタル間の関係や，基本的な処理手法（フーリェ変換，フィル タリングなど）を学習する。				
授 業 の 概 要 － － 計 画	まず離散的な信号表現について講義し，ディジタルフィルタとそのアナログ性などについて述べる。その後で離散信号の変換として極めて重要な $z$ 変換を ルフィルタの設計手法を学ぶ。   ［講義内容］   1．ディジタル信号処理の背景•目的   2．離散的な信号表現   3．離散フーリエ変換（DFT）   4．高速フーリエ変換（FFT）   5．ディジタルフィルタの基礎（時間応答）   6．ディジタルフィルタの基礎（周波数応答）   7．$z$ 変換   8．ディジタルフィルタの解析（伝達関数と周波数応答，時間応答と安定性）   9．ディジタルフィルタの解析（ディジタルフィルタの構成）   10．FIRフィルタの設計（窓関数法，周波数標本化フィルタ）   11．IIRフィルタの設計（アナログフィルタ設計手法の利用など）   12．IIRフィルタの設計（直接設計手法）				
成績評価の方法   レポートと定期試験によって総合的に評価する，レポートはパソコンを用いた計算が必要なもの を出題し，定期試験では本授業に関する基礎的な知識を問う。評価におけるレポートと定期試験の ウェイトは，それぞれ $60 \%$ ， $40 \%$ である。					
```テキスト•参考書等 テキスト:樋口龍雄,川又政征『MATLAB対応 ディジタル信号処理』 昭晃堂 3,360円```					
履修上の留意点					
備考					

	授業科目名	必修•選択	開講やメスター	単位数	担 当教員名
	シミュレーションエ学	選択	6	2	廣 田 千 明
	数値シミュレーションの基本的手法である差分法について学習する。またC言語によるプログ ラミング実習により，プログラミング方法やデータの処理方法，シミュレーション結果の可視化 などを習得することを目標とする。				
	差分法を用いて，代表的な偏微分方程式（拡散方程式，移流方程式，波動方程式な ミュレーションを行う。 ［授業内容］ 1．シミュレーションとは何か？ 2．グラフ作成ソフトgnuplotの使用法 3．数値シミュレーションの例1（粒子の運動シミュレーション） 4．数値シミュレーションの例 2 （針金内の温度分布） 5．数値シミュレーションの例3（移流拡散問題） 6．データの処理と可視化 7．常微分方程式の例 8．常微分方程式の数值解法 1 （オイラー法） 9．常微分方程式の数値解法 2 （高次解法） 10．常微分方程式の数値解法 3 （境界値問題） 11．連立方程式の数値解法 12．偏微分方程式の差分法による数値解法 13．ラプラス方程式とポアソン方程式の数値シミュレーション 14．拡散方程式の数値シミュレーション 15．移流方程式と波動方程式の数値シミュレーション				
成績評価の方法 レポートで評価する					
テキスト・参考書等 テキスト：河村哲也著，数値シミュレーション入門 サイエンス社 2，000円					
履修上の留意点 プログラミング演習程度のC言語の知識を必要とする					
備考					

	授業科目名	必修•選択	開講やメスター	単位数		教員 名
	画像信号処理	選択	6	2	陳	国 躍
	- ディジタル画像の特徴を理解する。 - 2値画像の主な処理内容を習得する。 - 多値画像の主な処理内容を習得する。 - 現在の情報処理技術や情報通信技術において，画像処理が重要な役割を果たしている理由を考察する。					
	本講義では，ディジタ - 人間の視覚と画 - 画像のディジタ - 2値化処理1（2値 - 2値化処理2（細 - 多値画像処理 1 - 多值画像処理2 - 多値画像処理3 - テクスチャ解析 - 3次元画像処理と - 文字認識とその - 色情報の特徴と - 画像の符号化	処理の基礎 式の概要 の特徴 距離変換） ，形状分析， 奐，ノイズ除 的変換） の検出，領域理 裁	よび画像認 形状特徴） ，画質の改 割）	戊とその 善）	いて	
成績評価の方法 期末試験と授業時に行ら課题演習で判定する。						
テキスト・参考書等テキスト 村上伸一：画像処理工学，東京電機大学出版局（2310円）						
履修上の留意点 ディジタル信号処理を履修していることが望ましい。						
備考						

	授 業 科 目 名	必修•選択	開講セメスター	単位数	担 当 教 員 名
	光工学	選択	6	2	武 田 和 時
	光工学（光エレクトロニクス）は，レーザ光の応用に関する学問である。光工学は，レ ーザ光の均一空間における挙動から，レーザダイオードや光ファイバなどの光部品，光通信シ ステムや光記憶システムなどの応用システムなど，極めて広範な技術分野を扱う。ここでは現在，特に技術の発展が著しい光通信システムと光記憶システムが理解できるようになることを目標に，光工学の基本事項を修得させることをねらいとする。				
	（講義内容） 1．光速の測定，波の回折，反射，屈折，偏波などの解説（ビデオ教材を使用） 2．レンズ，レーザ，フォトダイオード，光ファイバなどの解説（ビデオ教材を 3．レーザの発明に始まる光エレクトロニクスの歴史 4．レーザ光とその単色性，指向性 5．波形のフーリエ級数展開，パワースペクトル 6．マクスウェル方程式とベクトル解析による波動方程式の導出 7 。波動方程式と電磁波 8．電磁波の基本特性（光速，偏波，エネルギーなど） 9．幾何光学，光線の性質 10．ホイヘンスの原理，幾何光学による光線の反射，屈折 11．光線伝搬の行列表示と結像系の解析への応用 12．光波の回折と干渉 13．光受動素子（光ファイバなど）と光能動素子（半導体レーザ，光検出素子） 14．光応用システム（光ファイバ通信システム，光記憶システム）				
成績評価の方法 レポートおよび定期試験の結果により評価する。原則として出席は必須とする。					
テキスト・参考書等 参考書：（1）西原浩，裏升吾（2）光エレクトロニクス入門（3）コロナ社（4）3， 045					
履修上の留意点 期末試験までに，図書館で光工学関係の図書を $1 \sim 2$ 冊を選定し，読み通しておくことが望まし い。					
備考					

	授業科目名	必修•選択	開講やメスター	単位数	担 当 教 員 名
	情報ネットワーク工学	選択	6	2	武 田 和 時
	コンピュータネットワークは，文字，音声，動画などのマルチメディア情報をサービスする社会情報基盤として急速に発展している。情報ネットワークエ学はコンピュータと通信の技術から構成される巨大なシステムであるコンピュータネットワークを理解するために必要な基礎的事項を修得させることをねらいとする。				
	〈講義内容〉 1．情報ネットワーク技術を取り巻く情勢（ビデオ教材使用） 2．情報ネットワーク技術の全体像 3．マルチメディア情報の生成方法と特性 4． 2 進数と 16 進数によるディジタル情報の表現 5．ネットワークの基本構成と特性 6．ネットワークアーキテクチヤ，プロトコル，標準化機関 7．O S I 参照モデル（7階層モデル）の概要 8．O S I 参照モデルの物理層（データ伝送と交換システム） 9．O S I 参照モデルの物理層（イーサネットの物理層） 10．OSI参照モデルのデータリンク層（インターネットのデータリンク層） 1．OS I 参照モデルのネットワーク層（インターネットのネットワーク層） 12．OS I 参照モデルのトランスポート層（インターネットのトランスポート層） 13．OSI参照モデルのセッション層とプレゼンテーション層 14．OS I 参照モデルのアプリケーション層 （注）O S I 参照モデル：開放型システム間相互接続参照モデル				
成績評価の方法 レポートおよび定期試験の結果により評価する。原則として出席は必須とする。					
テキスト・参考書等					
履修上の留意点 期末試験までに，図書館で情報ネットワーク関係の図書を $1 \sim 2$ 冊を選定し，読み通しておくこ とが望ましい。					
備考 必須により視覚教材を用いる。またプリントを配布する。					

	授業 科 目 名	必修•選択	開講セメスター	単位数	担 当 教 員 名
	電気•電子計測	選択	6	2	笹 森 崇 行
授 業 の 目 相 標	最近の電子•情報技術の発展に伴い，従来頻繁に用いられてきた単機能の計測機器が姿を消し，情報処理能力を組み合わせた高機能な計測機器が主流を占めるようになってきた。このような計測機器の性能を十分に引き出し，満足な測定結果を得るには，測定器の原理や信号の性質を理解 することが重要となる。本講義では，最新の測定器や測定技術と共に，電子情報システムを専門 とする学生に必要な測定の基本原理，方法，技術の限界及び，発展性について理解することを目標とする。				
第1週 緒言 測定の基礎1 測定一般，測定の種類 第2週 測定の基礎2 誤差 第3週 単位と標準 第 4 週 電気計器 1 指示計器一般 第5週 電気計器 2 可動コイル計器 第6週 電気計器3 可動コイル計器以外の動作原理を用いる指示計器 第 7 週 中間試験（範囲：第 1 週～第 6 週） 第 8 週 電圧•電流•抵抗の測定 第 9 週 特殊な抵抗の測定 第10週 インピーダンスの測定 第11週 電力•電力量の測定 第12週 周波数•時間の測定 第13週 波形•位相・スペクトル・ひずみの測定 第14週 磁気測定，応用測定，計測自動化システム 第15週 期末試験（範囲：第1週～第14週）					
成績評価の方法 中間試験（30\％）及び期末試験（70\％）の結果から総合的に判断して評価する。					
$\begin{aligned} & \text { テキスト・参考書等 } \\ & \text { テキスト: 菅野 } \quad \text { 允著「電磁気計測」コロナ社 } 2 \text {, } 940 \text { 円 } \end{aligned}$					
履修上の留意点電磁気学，電気回路額の知識が必要である。					
備考 講義資料を電子情報システム学科イントラネット内の学習教育資料からたどって取り寄せられる ので，各自で入手すること。					

2－65

	授業科目名	必修•選択	開講やメスター	単位数	担 当教員名
	生体情報工学	選択	6	2	佐 藤 宗 純
	人間の高度な情報処理機能を理解することによって，機械の知能化や，逆に人にやさしい機械 の設計など，人間に有用な技術を生み出すための基礎を習得する。そのため，生体は外部からの情報をどのように捉らえているか，その情報が生体内部でどのように伝達され，処理されていく かについて，工学的なモデルと対応して理解する。				
	中枢神経系で行われて体内の情報を得るための理について，現在までに 1．生体と情報 2．生体情報の計測 3．生体情報の解析 4．神経系の概要 5．中枢神経系 6．視覚 7．聴覚 8．体性感覚•味覚•嗅覚 9．記憶のメカニズム 10．睡眠 11．生体信号と運動制御 12．医用生体工学 13．感情の計測 14．遺伝子と進化	る情報処理覚器の特徴， かっている	要，神経系の きの制御， に基づいて	情報伝 らに大冓を行	のメカニズム，外界と生 われている高度な情報処
成績評価の方法 適宜行ら演習と期末試験により評価する。					
テキスト・参考書等 テキスト：小杉幸夫•武者利光 共著『生体情報工学』森北出版 $¥ 1,995$参考書：赤澤堅造 著『生体情報工学』東京電機大学出版局 $¥ 2,625$参考書：杉江昇 監修，大西昇 著『生体情報処理』昭晃堂 $¥ 3,150$					
履修上の留意点					
備考					

