	授 業 科 目 名	必修•選択	開講せメスター	単位数	担 当 教 員 名
	材料力学 II	選択	4	2	邱 建 輝
	各種形状の部材，構造物の変形や強度の解析方法を学ぶことにより，材料の強度評械や構造物を安全に，かつ合理的に設計するための基礎力を養うことを目的とする。				
	講義はテキストに基づき，高校で学んだ物理学と数学の知識 う。また，材料力学をよく理解するには，適量な練習問題を自 1．梁の撓み 1）撓み曲線の微分方程式 2）重ね合せ法 3 ）平等強さの梁，横断面が変化する梁 2．梁における不静定問題 1）不静定梁 2）不静定ラーメン 3 ）組合梁 4）連続梁 3．梁の剪断応力 1）梁の剪断応力 2）剪断応力による梁の撓み 4．曲り梁 1）曲り梁の応力 2）曲り梁の撓み 3 ）薄肉曲り梁				に理解できるよ みるのが大切で
成績評価の方法 レポートおよび定期試験の成績で評価する。					
テキスト・参考書等 テキスト：中原一郎著『実践 材料力学』養賢堂 3780円					
履修上の留意点 材料力学 I を履修する必要がある。					
備考					

	授業 科 目 名	必修•選択	開講セメスター	単位数	担 当	
	破壊力学	選択	6	2	水 野	
	機械部品や構造物の破壊は，その機能が損なわれるだけでなく，時として多くの人命を奪うこ ともあり，機械•構造物の設計•保守を行う上で，その安全性•健全性を確保し保証することは技術者にとつて極めて重要な任務となる。この授業では，破壊力学の立場から材料の破壊現象と そのメカニズムを理解し，機械•構造物の設計•保守に応用することを目的とし，破壊現象に対 する理論的•定量的な取り扱い方を学ぶ。					
	授業の概要 破壊力学の立場から，機械•構造物を設計•保守するのに必要な機械材料の破壊現象 る知識，理論，材料評価法を習得するため，実構造物の破壊事例，固体の変形と破壊の ム，材料の強度とその評価方法，破壊力学の基礎的理論とその応用方法について学習す 授業計画 第 O 章 概 論 破壊力学とは，歴史的背景（破壊事例の紹介），工学的応用について第1章 固体の破壊 破壊の分類，理想的破壊強度，理想的せん断強度，実材料の破壊特性第2章 材料の破壊 破壊機構，延性破壊と脆性破壊，多軸応力と塑性拘束，時間依存性第3章 エネルギー開放率 エネルギー平衡，エネルギー開放率，Griffithの式，き裂進展速度第4章 応力拡大係数 き裂先端の応力場，応力拡大係数，重ね合わせの原理，エネルギー開放率との関係第5章 き裂先端の塑性域と開口変位 塑性変形の機構，き裂先端の塑性域，き裂先端開口変位，応力状態と変形様式第6章 破壊靭性と破壊抵抗 破壊靭性，安定破壊と不安定破壊，平面ひずみ破壊靭性，時間依存型き裂進展					
成績評価の方法 授業への出席状況，各章終了後授業中に行う演習，定期試験の点数を基に成績を評価する						
テキスト・参考書等 テキスト：小林英男『破壊力学』共立出版（定価：3，045円） 参 考 書：岡村弘之『線形破壊力学入門』培風館（定価：3，675円） 日本材料学会編『改訂 材料強度学』日本材料学会（定価：3，000円）						
履修上の留意点 上記テキストに沿って授業を進めるので，受講者は各自テキストを購入し持参すること。授業中に行う演習用に電卓を持参すること。 「機械材料学」，「材料力学」を履修していることが望ましい。						
備考						

	授業科目名	必修•選択	開講やメスター	単位数	担 当 教 員
	流体力学 II	選択	6	2	須 藤 誠
	近年の科学技術の進歩に伴い，流体力学は様々な学問分野との融合が進み，非常に広範囲にわ たって学際的に発展している。そのため，流体力学 I に引き続き，機械工学分野の技術者として必要とされる基礎的な数学事項から多面的に展開されている流体力学としての基本的な考え方 および様々な関連学問分野にわたる基礎知識の習得を目標としている。				
	「授業計画」 第1週 流体力学の方程式 第2週 流線•速度ポテンシャル・流量に関する例題 第3週 航空宇宙工学概論 第4週 翼形理論 第5週 レオロジー 第6週 連続体の変形 第 7 週 非ニュートン流体 第8週 プラズマ 第 9 週 電磁気学の基礎 第10週 電磁流体力学 第11週 磁性流体と磁性流体力学 第12週 機能性流体（ER流体•MR流体） 第13週 生物流体力学 第14週 生体流体力学 第15週 まとめ				
成績評価の方法 出席状況，課題レポート，期末定期試験により総合的に評価する。					
テキスト・参考書等 分野が多岐にわたるため特に用いないが，授業中に適宜資料を配付する。					
履修上の留意点 講義日数の 3 分の 1 以上は出席し，真摯に受講することが大切である。					
備考					

成績評価の方法

出席状況，課題レポート，期末定期試験により総合的に評価する。

テキスト・参考書等

分野が多岐にわたるため特に用いないが，授業中に適宜資料を配付する。

履修上の留意点

講義日数の 3 分の 1 以上は出席し，真摯に受講することが大切である。

備考

	授 業 科 目 名	必修•選択	開講セメス	単位数	担 当	
	機		4	2	尹 藤	
	機械システムに生じる振動現象などの動力学的挙動を理解するために，機械システムを質量や ばね等の要素に置き換えて機械システムの運動を解析する方法を習得し，その運動特性について理解する。特に本講義では，振動に関わる基礎的な専門用語と，物体の運動がただ一つの独立し た座標系で表せる 1 自由度系の振動について解析する方法（運動方程式の求め方とその解き方，固有振動数の求め方）を習得し，その運動特性を理解する。					
	＜授業の概要＞ 振動に関わる基礎的な専門用語の解説を行う。また，1自由度系の振動について解析す法を，例題を示しながら詳細に説明するとともに，演習問題を通して習得する。さらに，振動と強制振動の特性について解説を行う。 ＜授業の計画＞ 第1週：力学のまとめ（力とモーメント，つりあい，質点の運動） 第2週：力学のまとめ（慣性モーメント，動力学，運動方程式，回転運動，エネルギー） 第3週：振動の基礎（モデル化と要素，自由度） 第4週：振動の基礎（等価ばね定数，調和振動） 第5週：直線•回転振動系の運動方程式（自由振動の運動方程式，エネルギー法） 第6週：直線•回転振動系の運動方程式（レーリー法，ニュートンの第 2 法則） 第7週：直線•回転振動系の運動方程式（強制振動の運動方程式） 第8週：直線•回転振動系の運動方程式（運動方程式のまとめ） 第9週：1自由度系の一般解（自由振動の解） 第10週：1自由度系の一般解（強制振動の解） 第11週：定常応答解析（複素表示を用いた定常応答解析，共振） 第 12 週：自由振動（不減衰•減衰系における自由振動の様子） 第13週：強制振動（外部から周期的加振力•変位が作用した場合の振動の様子，振動絶縁） 第14週：摩擦がある場合の振動 第15週：定期試験					
成績評価の方法 定期試験 60% ，演習（小テスト）4 0 \％を基準とし，総合的に判断して評価する。						
テキスト・参考書等 テキスト：近藤泰郎 編著•小林邦夫 著，『よくわかる機械力学』オーム社 2,400 円（税別） 参考書：麻生和夫•谷順二•長南征二•林一夫 共著，『機械力学』朝倉書店 3，400円						
履修上の留意点 物理学 I とIIを履修済みであることが望ましい。また，三角関数と微分の取り扱いについて習熟 していることが望ましい。 受講する前に教科書を読み，疑問点を整理すること。また，講義終了後には，講義内容を確認し，式を自力で誘導できるように努力すること。さらに，疑問点があれば必ず質問すること。						

授 業 科 目 名	必修•選択	開講せメスター	単位数	担 当 教 員 名

	授業 科 目 名	必修•選択	開講セメスター	単位数	担 当 教 員 名
	加工工学	選択	4	2	呉 勇 波
授 業 の の 目 標	物づくりにおいて，除去加工技術は非常に重要な位置を占めている。除去加工とは，バイトや フライス，砥石など，切削工具による除去加工によって素材に所与の形状を付与する技術であり，機械製造技術の基幹技術である。本講義では，除去加工及び工作機械の基礎，さらに先端的な加工法としての遊離砥粒法による超精密加工や電気化学的加工などについて講義し，加工技術にお ける諸問題に対応できる能力を養成する。				
「知能機械製作学」で履修した各種加工方法の中の除去加工法を重点に置現象について考察する。加工された製品の品質の評価方法についても学習す 1．除去加工法の概要…種類と特質… 2．工作機械の種類と機能 3．切削工具の定義と名称，工具材料 4．切削理論 5．研削加工の特質 6．研削砥石，研削理論 7．加工面の幾何学的性状（表面粗さ），加工変質層 8．遊離砥粒法：ラッピング加工，超音波加工，バレル仕上げ，噴射加工 9．放電加工					
成績評価の方法 出席とレポートの提出状況（60\％），および定期試験結果（ 40% ）をもとに総合的に評価する。					
テキスト・参考書等 テキスト：パワーポイント，板書と配布プリントを兼用 参 考 書：（1）津和秀夫著 機械加工学（養賢堂）3，400円 （2）中島利勝，鳴瀧則彦著 機械加工学（コロナ社）2，800円 （3）日本機械学会編 生産加工の原理（日刊工業新聞社）2，200円					
履修上の留意点知能機械製作学を履修しておくことが望ましい。					
備考					

	授業科目名	必修•選択	開講セメスター	単位数	担 当教員名
	生産システム工学	選択	6	2	新 任 教 員
	人類の平和で豊かな生活を物質的な側面で保障するために，21世紀の生産はどのようになら なければならないのか。良い製品を早くまた安く生産するにはどのような技術•設備と情報が必要か。地球環境を保全しながら，生産活動を行うにはどんな配慮が必要か。このような問題意識 をもって，製造工場の業務と技術とを学び，生産システムの概要を理解する。				
	テキストを土台にして，以下の項目について講義とレポー 1．いま製造業は わが国の製造業の現状と対応 2．設計のやり方 設計のプロセス／設計の能率化／図面の管理 3．材料の買い方 素材や部品の購買／加工の外注／倉庫管理 4．部品を加工する 加工／熱処理／表面処理／最新の加工技術 5．部品を組立てる 締結の方法／自動組立て 6．高品質の製品を作るために品質管理／信頼性／T Q C／I S 0 9 0 0 0 1／P L 法 7．生産活動を円滑に行う 製品原価／改善のやり方 8．物の流れをよくするために 工場内の物流／出荷後の物流				寸論とで構成する。
成績評価の方法 期末の試験のほか，平常点（出席とレポート／発表など）を考慮して評価する。					
$\begin{aligned} & \text { テキスト・参考書等 } \\ & \text { テキスト: 富士電機能力開発センター編『やさしい物ら゙くりの基礎』オーム社 } \quad ¥ 2,800 \\ & \text { 参 考 書: 岩田一明監修NEDEK研究会編著『生産工学入門』森北出版 } \quad ¥ 2,200 \end{aligned}$					
履修上の留意点					
備考					

2－36

	授業 科 目 名	必修•選択	開講セメスター	単位数	担 当 教
	コンピュータ援用設計学	必修	4	2	小 林 浸
	本科目では『機械設計』を講義する。機械設計は，機械の分野においても物づくりの基本であ って，機械に関係する周辺科学と技術を熟知した設計者が自らのアイデァを人工物に具体化し，製造するための図面を作成するまでをいう。ここでは，機械設計に盛り込まれるべき事柄を講義 し，順次簡単な機械または機械要素から電力機器，磁気ディスク装置，半導体装置などを例題に とり，設計の初歩を具体的に修得させる。				
授 業 の 概 要 • 計 画	講義の概要 機械設計概論 1．機械について 2．機械の目的 3．機械の構成 4．機械の性能と評価機械の総合的評価 5．設計と設計者，閃 6．設計の目的と動機 7．設計の過程 8．設計者の基本的な 9．設計と規格 10．機械設計と材料 ケーススタディ 1．機械要素 2．電力機械（ガスター 3．磁気ディスク装置 4．半導体デヴァイス 5．コンピュータ援用	械の仕様と研究開発と詠 ）または産業 十及びエンジ	基本性能， 設計，設計 機械（ポン ニアリング	本性能 の立場 C A D	間の矛盾，
成績評価の方法					
履修上の留意点 本科目の講義は第4セメスターで平行して行う設計製図I，II と密接に関係する。第6セメスターで行う設計製図IIはコンピュータ援用設計の演習であるので，この科目の単位の修得が必要である。					
備考					

> 2-38

	授業 科 目 名	必修•選択	開講セメスター	単位数	担 当 教 員 名
	制御工学 I	必修	4	2	嵯 峨 宣 彦
$\begin{gathered} \hline \text { 授 } \\ \text { 業 } \\ \text { の } \\ \text { 目 } \\ \text { 標 } \end{gathered}$	身の回りには，メカトロニクス機器をはじめとして，＂制御＂と深く関わっている。そこで，本講義では実際のシステム設計に適応できる基礎的な古典制御の修得を目標として，制御を学ぶ にあたり必要な数学および制御系設計に必要な基礎理論について学ぶ。				
$\begin{gathered} \text { 授 } \\ \text { 業 } \\ \text { の } \\ \text { 概 } \\ \text { 要 } \\ \text { • } \\ \text { 計 } \\ \text { 画 } \end{gathered}$	§ 1 章 1．制御工学の数学（ラプラス変換，複素数） 2．ブロック線図と基本要素の伝達関数 （ブロック線図の等価変換，比例要素，微分要素，積分要素，1次遅れ要素， 2 次遅れ要素，むだ時間要素） § 2 章 3．過渡応答（単位ステップ応答，時定数，定常状態） 4．周波数応答（ゲイン，位相角，ボード線図，ナイキスト線図） §3章 5．フィードバック制御 （定常偏差， 0 形， 1 形， 2 形，定常位置偏差，定常速度偏差，定常加速度偏差）				
成績評価の方法 （i）1 1 月中旬および 12 月下旬， 1 月初旬におこなら章末試験（計 100 点）， （ii）1月下旬（iii）2月初旬の定期試験（各 1 0 0 点満点）のうち，高得点の成績によって評価する。					
テキスト・参考書等 テキスト 実践教育訓練研究協会 著「機械の制御一理論と実際—」工業調査会 税込¥2，940					
$\begin{aligned} & \text { 履修上の留意点 } \\ & \text { 応用数学IIは必ず受講のこと。 } \\ & \text { 講義で配布する演習問題等をよく理解しておくこと。 } \end{aligned}$					
備考					

	授業科目名	必修•選択	開講セメスター	単位数	当教	員 名
	メカトロニクス	選択	6	2	南	正
授	メカトロニクス機器が高効率に機能を発揮するためには，骨組みである機械要素，および頭脳 としての電子回路やソフトウェアがそれぞれに高性能であること以上に，それらの構成要素のシ ステム内でのバランスが重要である。この講義では，メカトロニクス機器の代表であるロボット アームを例に取り上げ，それらの設計において材料力学，機械力学，制御工学，電子工学，計算機工学等の知識が如何に導入され組み合わされているかを理解することで，メカトロニクス機器 の構成の一般とそのシステムとしての設計法を理解することを目的とする。					
1．緒言 メカトロニクスの定義 2．軽量ロボットアーム 2•1 アームのモデル化と解析 $2 \cdot 2$ システムの構成 2 •3 駆動制御法 $2 \cdot 4$ システムの応答（シミュレーション結果•実機応答） 3．二本指把持機構 $3 \cdot 1$ 機構の構成 3•2 モデル化と解析 3•3 駆動制御法 $3 \cdot 4$ システムの応答（シミュレーション結果•実機応答） 4．まとめ						
成績評価の方法 提出レポートおよび筆記試験によって総合的に判断する						
テキスト・参考書等 講義で配布するプリントを使用する。 参考書：「メカトロニクスと運動制御入門」（長屋，長南，高木，江共著）養賢堂 $¥ 3,780$						
履修上の留意点 関連科目の内容を十分に理解していることが重要である。						
備考						

	授業 科 目 名	必修•選択	開講セメター	単位数	担 当教	
	応用数学 I	必修	4	2	佐 藤	明
	複素関数は流体力学を初め，振動工学など多方面の分野に非常によく現れる関数である。複素関数を用いることで，数学的な処理が非常に簡潔に明確な形で行えることが少なくない。偏微分方程式は，物理現象を記述する支配方程式として，工学のほぼ全領域で現れる非常に重要な方程式である。以上，物理現象の解析的ならびに数値的なアプローチに欠かすことができない重要な概念である複素解析と偏微分方程式の基礎を学習する。					
	1．複素数の関数複素数， n 乗相 2．正則関数 コーシー・リ 3．複素関数の積複素数の関数の 4．展開•特異点 べき級数，テ 5．偏微分方程式線形性と解の	－級数•極限 方程式，基本 コーシーの定 開・ローラ さの原理，2	複素変数の 的な正則関数 理，コーシー 展開，留数， 皆線形偏微分	関数 逆関数 の積分表 留数の応 方程式，		
成績評価の方法 定期試験 65% ，レポート 35% を基本とするが，出席状況や質問などの授業参加熱心度も考慮する ことがある。						
```テキスト•参考書等 テキスト:矢野健太郎•石原 繁共著『解析学概論(新版)』裳華房, 2, 500円 参 考 書:渋谷仙吉•内田伏一共著『偏微分方程式』裳華房, 1, 800円```						
履修上の留意点						
備考						



	授業科目名	必修•選択	開講やメスター	単位数	担 当 教 員 名
	数値計算	選択	6	2	嵯 峨 宣 彦
授	応用数学により定式化された問題を，Microsoft Excelを用いて数値解析する場合の種々 の計算手法について学ぶ。工学系で頻繁に使われる基礎的な数値計算法の修得を目的とする。				
授   業   0   楖   要   －   訃   画	1．方程式の解法   （ニュートン法とはさみうち法）   2．行列問題の解法   （行列の計算，行列式，逆行列，固有値，固有ベクトル，べき乗法）   3．連立方程式   （ガウス・ジョルダンの消去法とガウス・ザイデルの反復法）   4．多項式による補間と関数近似   （ラグランジュの補間法と最小二乗法）   5．数値積分法   （台形公式法とシンプソン法）   6．常微分方程式の解法				
成績評価の方法   演習課題のレポート提出と終了課題レポートの合計で評価する。					
テキスト・参考書等授業ごとにプリント配布					
履修上の留意点					
備考   定期試験は行わず，課題レポートで評価する。					


	授業 科 目 名	必修•選択	開講セメスター	単位数	担 当 教 員 名
	数値シミュレーション法	選択	4	2	伊 藤 伸
	様々な現象の解析，様々な機械の設計•性能改善などのために，コンピュータを用いた数値シ ミュレーションが行われ，現象の理解と最適な設計に役立てられている。その計算に用いられる方法としては有限要素法，差分法などの方法がある。そこで本講義では，有限要素法と差分法に焦点を絞り，それらの基礎的事項を習得することを目標とする。				
	有限要素法と差分法に関わる基礎的な専門用語の解説を行う。また，有限析手法の基礎ならびに解析する方法を，例題を示しながら詳細に説明すると通して習得する。なお，本講義ではコンピュータを用いた演習は行わない。   講義において，以下の項目を取り扱う。   有限要素法   ブラックボックスとしての有限要素法   剛性マトリックスの概念   弾性体の支配方程式の基礎（有限要素法による弾性応力解析の基礎式）   マトリックス法による骨組構造解析   2 次元有限要素法   差分法   テイラー展開に基づく差分式の誘導   差分法を用いた解析の例（境界値問題•初期値問題）				
成績評価の方法   演習（小テスト）などを総合的に判断して評価する。					
テキスト・参考書等   テキスト：三好俊郎『有限要素法入門』培風館 2,910 円（税別）   参考書：日本機械学会編『流れの数値シミュレーション』コロナ社 3,600 円（税別）					
履修上の留意点   線形代数学，材料力学Iを履修していることが望ましい。特に，行列・ベクトルを扱うので，各自 で復習しておくこと。   受講する前に教科書や参考書を読み，疑問点を整理すること。また，講義終了後には，講義内容 を確認し，式を自力で誘導できるように努力すること。さらに，疑問点があれば必ず質問すること。					
備考   本講義で扱う内容は，機械知能システム学演習IIの一部の内容に関連がある。					


	授業 科 目 名	必修•選択	開講セメスター	単位数	担 当 教 員 名
	幾械知能システム学特別講義	選択	6	2	機械知能システム学科   全教員（係：学科長）
$\begin{gathered} \hline \text { 授 } \\ \text { 業 } \\ \text { の } \\ \text { 目 } \\ \text { 標 } \\ \hline \end{gathered}$	機械工学の各教育分野で話題となつている先端的な，あるいはトピックス的な課題について学習する。このことによって，学生各自が各課題に対するまとめ方，プレゼンテーションの仕方な どを学習することを目標とする。同時に卒業研究を行ならにあたつてのアプローチの方法などに ついても学ぶ。具体的には本学科の9講座が担当し，学外の専門家（非常勤講師）の講義も予定 する。				
1．材料力学に関する研究動向と将来の展望   2．新しい知能材料の研究開発と将来の展望   3．熱工学に関する研究動向と将来の展望   4．流体システム工学に関する研究動向と将来の展望   5．コンピュータシミュレーションに関する研究動向と将来の展望   6．新しい生産システムの研究開発と将来の展望   7．マイクロマシンの研究開発と将来の展望   8．デジタル制御の研究動向と将来の展望   9．ロボットの研究開発と将来の展望					
成績評価の方法   与えられた課題に対するレポートなどと出席状況を含めて総合的に評価する。					
テキスト・参考書等   特にテキストは使用しないが，参考文献，プリントなどを配布することがある。					
履修上の留意点					
機械工学最先端の現状を知ることが出来るので，勉学の指針を得る上でも，卒業後の進路を考 える上でも有益である。					


	授業科目名	必修•選択	開講やメタター	単位数	担 当教員名
	電磁気学 II	必修	4	2	○笠 井 雅 夫佐 藤 宗 純
	電磁気学は，電気，通信，電子，情報のすべての分野において基本となるものである。電磁気学1で履修した知識をもとに電磁気学において，もつとも重要なマクスウェルの方程式が理解て きるようにする。				
	最初に磁性について述べる。さらに磁界と電流の相互作用を定性的かつ定量的に講義し，電磁気学において，もつとも重要なマクスウェルの方程式およびその応用について講義する。   ＜講義内容＞   1．物質の磁性   （磁石と磁界，磁気分極，等価磁款，磁化）   2．電磁誘導   （ファラデーの法則，速度起電力，インダクタンス，コイルの磁気エネルギー）   3．マクスウェルの方程式   （変位電流，マクスウェルの方程式）   4．電磁波   （波動方程式，平面波，ポインティングの定理）				
成績評価の方法定期試験の結果から評価する。					
テキスト・参考書等   テキスト：奥澤隆志 「電磁気学」 近代科学社					
履修上の留意点   （1）講義前に，必ずテキストを一読すること。   （2）出題されたレポート／演習については，解く努力をすること。この際，友人とのディスカッ ション，教員への質問は，何ら問題がないが，丸写しはしないこと。					
備考   テキストにしたがって，重要な項目にしぼって講義を行う。   再試験のための補講は原則的に実施しないので，常日頃から講義内容の理解に務めること。					



