	授業科目 名	必修•選択	開講セメスター	単位数	担 当 教 員 名
	システム科学 II A	必修（機械）	2	2	杉 本 尚 哉
$\begin{gathered} \hline \text { 授 } \\ \text { 業 } \\ \text { の } \\ \text { 目 } \\ \text { 標 } \end{gathered}$	システム分析や，システム設計に用いられる基本的な考え方や原理手法について解説する。「システム」とは，「多くの異なる要素がある目的を達成するために相互に関連し，全体では統一体としての機能を発揮するもの」であるが，この「システム」の設計，評価，統合に必要な具体的手法を通して，システムの数理解析に関する基礎を習得する。				
授 業 の 概 要 計 画	概要 本講義では，主にシステム工 にシステム工学が生まれた背 やその解析方法，システムの 講義項目•内容 1．システム工学の基本概念 2．システムの最適化：制約線形計画法，シンプレ 動的計画法，最適性の 3．待ち行列理論：システ 窓口が1個の場合の待 窓口が複数の場合の待 4．システムの信頼性：シス 信頼性，保全性，安全 5．動的モデル解析：システ 伝染病の伝播モデル生態系モデル ランチェスタモデル	学で用いられ景やその基本分析手法につ 「システム条件の下で目 クス規範 原理 こ関係する要 行列 ち行列 テムの壊れに生 ムの数式モデ	数理解析手念について て，下に示 の概念，シ を最大限達 が確率に支 さ，修理の を解いて，	基礎に ごた後， 具体的項 ム工学 るるは されてい さ，壊 性質や	説明していく。初め ム工学の代表的問 って解説する。 について ればよいか？ について きの安全さについ 時間変化を調べる
	㱴評価の方法 期末に行う試験（百点満点）に評価を行う。	講義期間中の	回のレポー	の成績	点）を加味して成
	キスト・参考書等 参考書：添田喬，中溝高好 共著渡辺茂，須賀雅夫 著	『システム 『新版 シス	学の講義と ム工学とは		$\begin{gathered} \text { 2, 100円 } \\ \text { フス } 966 \text { 円 } \end{gathered}$
履修上の留意点 解析学 I ，確率•統計学，システム科学I を履修済であることが望ましい。					
備考					

2－15

	授 業 科 目 名	必修•選択	開講セメスター	単位数	担 当 教 員 名
	システム科学 II B	必修（電子）	2	2	阿 部 紘 士
	本科目は「システム科学I」（1セメスター，2 単位）と「システム科学演習」（3セメスター， 2 単位）の間に位置するもので，ここでは，「システム科学 I 」でのシステムの意味およびその基礎手法の理解を更に深めると共に，次の「システム科学演習」で具体的に演習する各種システ ム技法について理解する。関連事項として，科学技術者倫理の概要を学ぶ。				
	システムは，「多くの要素の集合体で，各要素が有 ようとするもの」と定義されるように，その中には工 が含まれる。システム科学はシステムの目的を最も効技術分野の技術者にとつて基礎素養として欠くことの 本科目では，初めに，システム構築などに関連する事続いてシステム科学の基本となる次の各種システム技 その応用を講義する。 1．技術倫理概論（第 $1-2$ 週） 2．システム工学技法概論（第 $2-3$ 週） 3．システム計画技法（第4－6週） 1）予測技法 2）構造化技法 3）評価技法 4）スケジュール管理技法 4．統計的解析技法（第 $7-8$ 週） 5．モデリングとシミュレーション（第9－10週） 6．最適化技法（第11－1 2 週） 7．システムの信頼性（第 1 3－14週） 8．定期試験（第15週）				全体として目的 システムなど幅法を与えるもの である。 者倫理の概要を基本的な考え方
成績評価の方法 定期試験，課題レポートおよび受講態度（講義への出席，レポート提出等）により総合的に評価 する。					
$\begin{aligned} & \text { テキスト・参考書等 } \\ & \text { テキスト: プリントを配布する。 } \\ & \text { テ参 考 書: 中村 嘉平, 浜岡 尊他『新版システム工学通論』朝倉書店 } 2 \text {, } 940 \text { 円 } \end{aligned}$					
履修上の留意点 「システム科学 I 」を受講していること。					
備考					

2－16

	授業 科 目 名	必修•選択	開講セメスター	単位数	担 当
	システム科学IID	必修（経営）	2	2	三 品
	3セメスター以降から本格的に学ぶ各専門科目を概説し，経営システム工学の体系を紹介す る。またシステム科学 I で学習した基本的な考え方•方法論が，経営の意思決定問題にどのよう に応用されるかについて，特に企業の企画•計画に関する諸問題を中心に平易に解説する。また現在は企業を取り巻く環境の変化が激しいが，システム工学的な対応の仕方はどの様なものであ るかについても述べる。				
	1．経営システム工学の概要 （1）経営システム工学科で学ぶこと （2）経営に関するシステム工学的アプローチについて （a）基本的考え方•手順 （b）方法論 （3）経営意思決定問題とは何か 対象とそのアプローチについて，企業各部門での具体例を挙げて説明 （a）企業運営資金•利益をだすということ （b）企業のアウトプットとしての商品について （c）設備投資について （d）資材購入と製造について （e）他企業との競争について （f）経営計画について （g）その他 2．経営システム工学におけるパラダイム・シフトと今日的課題 価値観，問題のとらえ方，定式化，問題の解き方に関する将来方向について （1）企業の国際化と経営システムについて （2）コアコンペテンスとしての「ものづくり」について （3）ベンチャービジネスについて				
成績評価の方法 出席状況，レポートその他，定期試験により評価する。					
テキスト・参考書等 テキスト：経営戦略のエンジニアリング・アプローチ 鈴木•三品•黒須著 日科技連 $2004 \backslash 2,800$					
履修上の留意点					
備考					

	授業 科 目 名	科目コード	開講セメスター	単位数	担 当 教 員
	経営システム工学概論	選択 $\left(\begin{array}{ll} \text { 機械 } & \text { 電子 } \\ \text { 建築 } & \end{array}\right)$	4	2	$\begin{array}{ccc} \hline \text { 三 } & \text { 品 } & \\ \text { 相 } & \text { 馬 } & \text { 隆 } \\ \text { 嶋 } & \text { 崎 } & \text { 真 } \end{array}$
	企業経営とは何か，経営に係わる諸問題とは何かについて説明し，それらの問題を発見•解決 する手段としての経営システム工学の考え方•方法論を述べる。企業内代表的部門の諸活動を取 り上げ，部門の目的，関連する問題点，その解決方法等を具体的に解説する。また，全社に関わ る意思決定としての経営戦略を，経営システム工学の枠内で捉える時の考え方を述べる。				
	1 企業の仕組みとその活動を理解する （1）資金の管理と評価 企業体質評価（三品） 財務諸表の構造と，それらから得られる情報を駆使した経営分析 （経理部 財務部） （2）他社との競争を考える（三品） 経営戦略の策定（企画部） （3）シーズからニーズへの価値の転換（相馬） 研究開発 製品開発（研究所 事業部製品開発部） （4）有効性•効率性を追求した製造•営業活動と情報システムの活用（嶋崎）需要予測（販売部） 在庫問題（製造部 資材部） 品質管理（品質管理部） 2 経営システム工学の応用としての戦略的意思決定方法について理解する（三品） （実際には，ほとんどの経営問題は各部門にまたがっている。各部門の有機的な つながりにより，新しい価値が創造できることをよく理解すること）				
成績評価の方法 出席状況，レポートその他，定期試験により評価する					
テキスト・参考書等 参考書：経営戦略のエンジニアリング・アプローチ 鈴木•三品•黒須 日科技連 2004 ¥2， 800 その他，必要に応じて指示する					
履修上の留意点特になし					
備考					

2－20

成績評価の方法

提出レポートおよび筆記試験によって総合的に判断する

テキスト・参考書等

（テキスト）「工学の数学 微分積分」（田代嘉宏著）森北出版 $\backslash 2,520$

履修上の留意点
講義は，解析学の基礎的な概念およびその性質を中心に展開していくが，それらを理解しさらに深化さるためには，日常的に復習と演習を繰り返すことが重要である。
備考

	授業 科 目 名	必修•選択	開講セメスター	単位数	担 当 教 員
	解析学 II	必修（電子）	2	2	高 山 正 和
授 業 の 仿 目 標	解析学Iに続いて多変数関数の微分法と積分法を扱う。多変数を用いることによって，現実の時空間を数学モデルとして取り扱うことができるようになる。解析学IIにおいては，多変数関数の微分，積分に関する基礎的な概念と手法の習得を行い，初等的な関数に対する応用についても理解，利用ができるようにすることを目標とする。				
講義内容 1．多変数関数 2．微分係数 3．合成関数の微分法 4．高次微分係数 5．極値問題 6．陰関数定理 7．条件付極値 8．重積分 9．変数変換 10．体積•曲面積 11．広義重積分 12．線積分とグリーンの定理 講義は，基礎的な概念およびその性質を中心に展開していくが，それらを理解し，その理解を深化させるためには演習を繰り返すことが非常に大事である。					
成績評価の方法 定期試験によるが，レポートの成績も加味する。					
テキスト・参考書等 テキスト：小寺平治著 『テキスト微分積分』 共立出版 2003年 2，000円＋税 参考書：1．寺田文行／坂田泩 共著 『演習と応用 微分積分』サイエンス社 2000 年 1 ，700円＋税 2．石村園子著 『やさしく学べる微分積分』 共立出版 1999年 2，000円＋税					
履修上の留意点 多変数の微積分もその基礎は一変数の微積分にある。よって，解析学Iで学んだ事柄をしっかり身 につけておくことが肝要である。					
備考 講義外に演習授業の時間を用意している。単位認定とは無関係であるが，講義内容の理解を深める ことや講義中に理解できなかった点，自己学習の上で生じた問題点などを解決することなどに利用し て欲しい。					

	授業 科 目 名	必修•選択	開講セメスター	単位数	担 当 教 員 名
	解析学 II	選択（経営）	2	2	佐 藤 俊 之
	微分積分学は理工系学問の重要な基礎であり，いかなる学問分野においても微分積分の知識が必要とされると言っても過言ではない。解析学IIでは積分法，偏微分法，重積分法の概念を理解し，初等的な関数に対してこれらに関する計算技能を習得することを目標とする。				
	解析学の中核をなす微義は教科書に従ってお書にある問）をおこな 講義内容は以下の通 1 ．積分法（1変数関数） - 原始関数，不定積 - 置換積分法，部分 - 広義積分 2．偏微分法 - 偏導関数 - 全微分 - 合成関数の微分 - 偏微分法の応用 3．重積分法 - 重積分の定義 - 重積分の計算 - 積分の変数変換 - 重積分法の応用	学のうち，1変教科書の内容 らうことで理 積分	の積分法と こ関して説明 度を深める。	微分法 したのち	に講義をおこな 学生に演習（特に
成績評価の方法 定期試験の成績（80\％）に加え，出席状況，講義時間内におこなう演習，レポートなどを勘案（20\％） して評価する。					
テキスト・参考書等 テキスト：『基礎からの微分積分』（日野義之，石村隆一，久我健一共著，培風館）1，575円					
履修上の留意点 教科書を持たずノートも取らずに受講している学生には単位を与えないので注意すること。また，教科書内の問題を学生に解いてもらう形式で演習を行うので予習をしてくること。					

	授業科目名	必修•選択	開講やメスター	単位数	担 当教員名
	物理学 I	必修（機械）	2	2	武田紘一
	物理学 I では，物理学の一分野であり，また機械工学の基礎でもある「力学」を学習する。力学は，力を受けた物体がどのように運動するかを考える学問であり，すべての力学問題は，いく つかの基本法則を覚えておけば，後は比較的簡単な数学を使って解決される。従って，授業の目標は，論理的な推論によって問題解決する道筋を理解し，習得することにある。				
教科書を使用して以下の項目を順次，講義するが，内容次第で複数週に渡ることもある。また講義内容の理解を調べるためのレポート提出がある。 【講義項目】 1．運動の表し方：座標と変位 2．速度と加速度：変位の導関数 3．運動の法則：力と加速度 4．単振動：調和振動子とエネルギー積分 5．束縛運動：垂直抗力，抵抗力，張力 6．エネルギーと仕事：エネルギー保存則 7．非慣性系での運動：慣性力，遠心力，コリオリの力 8．衝突と 2 体問題：運動量保存則 9．惑星の運動：万有引力と角運動量保存則 10．剛体の力学の基礎：角運動量，カのモーメント，運動方程式 11．剛体の平面運動 ：慣性モーメント 12．自由空間の剛体系：回転ベクトル 13．弾性体の力学 14．流体の力学					
成績評価の方法 定期試験 60% ，提出レポート 20% ，授業中の学習態度 20% として総合評価する。					
テキスト・参考書等 教科書：川村 清著，『力学』，裳華房，1，900円＋税 参考書：青野 修著，『力学演習』，サイエンス社，1，950円＋税					
履修上の留意点 高校で物理を習わなかった場合は，基礎物理学（同セメスター開講）も必ず履修すること。					
備考					

	授業科目名	必修•選択	開講セメター	単位数	担 当教員名
	物理学 II	選択（電子）	2	2	竹 内 伸 直
	物理学は，時間や空間を含めた自然を構成する物質や自然界の多様な現象を定量的にとらえ， その仕組みや法則を数学的形式で表現できるようにするものである。この物理学の基礎として重要と思われる事項について，基礎的概念を十分理解し，その応用，知識の整理が出来るようにす る。				
	物理学Iをふまえて，さらに以下の事項について講義する。 〈講義内容〉 1．振動と波動 （いろいろな波動，振動の方程式，波動反射の境界条件，位相速度と群速度） 2．光 学 （光の反射と屈折，光の干渉と回折，偏光） 3．熱力学 （状態方程式，カルノーサイクル，エントロピー）				
成績評価の方法 定期試験で評価する。試験問題の多くは，講義の中での演習問題から出題する。					
テキスト・参考書等テキスト：小出昭一郎『物理学』裳華房 $¥ 2,100$					
履修上の留意点 物理学 I を履修していること。物理現象を数学を用いて説明するので数式処理についてよく理解 する必要がある。					
備考					

	授業 科 目 名	必修•選択	開講セメスター	単位数	担 当 教 員 名
	物理学 II	選択 （建築，経営）	2	2	湯 川 俊 浩
$\begin{array}{\|c\|} \hline \text { 授 } \\ \text { 業 } \\ \text { の } \\ \text { 目 } \\ \text { 標 } \end{array}$	物理学は，自然を構成する物質や自然界の多様な現象を定量的に捉えるものであり，その仕組みや法則は数学的に表現できる。本講義では物理学 I で学んだ「力学」と「電磁気学」を基 にして，さらに弾性体•流体（連続体），振動•波動，熱力学等へと進み，物理学全般につい ての基礎的概念を十分理解出来るようにすることを目的とする。				
授 業 の 概 要 計 画	物理学IIでは，弾性体•流体（連続体），振動•波動，熱力学等に関する分野で重要な法則や数式の成り立ちを理解した上で，演習問題を課し理解を深める。 〈講義内容〉 弾性体と流体 ひずみと応力 弾性体のエネルギー 静止流体の圧力 流速の場 振動•波動 単振動•減衰振動 強制振動•共振（共鳴） 弦の振動 熱力学 状態方程式 熱力学の第 1 法則 熱力学の第 2 法則				
成績評価の方法 定期試験，出席状況，演習課題等により，総合的に評価する。					
テキスト・参考書等 テキスト：小出昭一郎著『物理学』 裳華房 2,200 円＋税（物理学 I と同じ）					
履修上の留意点 物理学Iを履修済みであることが望ましい。					
備考					

